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Wave functions with localizations on classical periodic orbits
in weakly perturbed quantum billiards
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We analytically investigate quantum wave functions with localizations on classical periodic orbits (POs) in
the circular billiards. We construct the coherent states which are the coherent superpositions of nearly degen-
erate eigenstates and found to be localized around single classical POs. With the constructed coherent states,
we can analytically express the mesoscopic eigenstates in the weakly perturbed systems, which are found to be
localized on the ensemble of classical POs. Furthermore, these coherent states can be utilized to study the

quantum vortex structures in quantum billiards.
DOI: 10.1103/PhysRevE.74.046214

I. INTRODUCTION

The exploration of the mesoscopic billiard is one of the
most useful tools for connecting quantum mechanics with
the classical limit. For two-dimensional billiards, the simpler
shapes include the triangle, the square, and the circle. The
circular billiard could be regarded as the N-sided regular
polygon with N— . In other words, the circular billiard has
the highest symmetry in the angular coordinate ¢ and its
trajectories have a one-dimensional degeneracy correspond-
ing to the rotational symmetry of the system. The interplay
between the classical periodic orbits (POs) and the quantum
energy spectrum has been extensively discussed in the circu-
lar billiard [1-5]. Furthermore, the weakly perturbed circular
billiards are often used to study the transitions of wave func-
tions from regular to chaotic distributions [6—11]. The wave
functions with localizations on classical POs conspicuously
emerge in Lee et al.’s numerical eigenstates of the perturbed
system in the index-guided circular microcavity with the
spiral-shape deformation [12]. Earlier, Chinnery et al. built
an acoustic apparatus to visualize the wave patterns in a
water-filled circular cavity [13]. They found that the resonant
patterns are Bessel-like eigenstates in the low-order regime;
however, wave patterns localized on POs usually appear in
the high-order regime. There are several optical experiments
for the weakly perturbed circular cavity to explore the char-
acteristics of the wave patterns [14—17]. Their results also
reveal that the weak deformation on the regular shape often
causes the resonant wave patterns concentrated on classical
POs. Therefore, the classical POs play a crucial role in the
eigenstates of the deformed mesoscopic quantum system.
Even so, the relationship between the classical POs and the
mesoscopic wave functions has not been clearly explored as
yet for the weakly perturbed quantum system.

Here we use the correspondence between classical dy-
namics and quantum spectra to construct the coherent states
(CSs) associated with single classical POs. The constructed
CSs are further employed to represent the eigenstates in the
weakly perturbed systems in a manifest way, in which the
mesoscopic eigenstates are usually localized on the ensemble
of the classical POs. The analytic connection between per-
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turbed eigenstates and CSs reveals the significance of the
relative phase in quantum-classical transition. Finally, we
utilize these CSs to study the vortex structures of the meso-
scopic wave functions in quantum vector currents. Vortices
are responsible for many observed phenomena known
mainly to occur in macroscopic quantum systems, such as
superconductors or superfluids [18]. In recent years, there
has been growing attention to the occurrence of quantum
vortices in the current flow of mesoscopic structures espe-
cially in semiconductor open quantum dots [19], in which
the ballistic quantum transport reveals that the quantum
states associated with the classical POs play an important
role in the striking phenomena of conductance fluctuations.

II. COHERENT STATES WITH LOCALIZATIONS ON
SINGLE CLASSICAL PERIODIC ORBITS

Periodic orbits in classical circular billiards are defined by
two parameters (p,g). The value of p is the number of
bouncing points on the boundary of a closed trajectory, and
the value of ¢ is determined by the chord angle of the suc-
cessive bounces. As shown in Figs. 1(a) and 1(b), the
p-bouncing points divide the circumferential angle into p
parts of 277/ p, and the chord angle ® is equal to the product
of g and 27/p, i.e., ®=¢q-27/p. Besides, the initial point of
the classical PO is described by angle 6pq as shown in Figs.
1(c) and 1(d), where 6pq is the included angle between hori-
zontal and the intercept OT and increases as OT rotates in the
counterclockwise direction.

In classical dynamics, as shown in Fig. 1(b), the radial-
component velocity related to the center O at the turning
point T vanishes leaving only angular-component velocity.
All energy turns into angular energy under the conservation
of energy, i.e., the energy at point 7 is given by

2 2
E - Lmazx - Lmax 5 >, (1)
2uR i, Z,u[R cos(;)]

with RminEE":R cos(%). In quantum mechanics, the solu-
tions of Schrédinger equation for a circular billiard satisfied
the Dirichlet boundary condition are

lﬂn,e(”, d)) = J@(kn,fr)gi€¢’ (2)

where € and n are the angular and radial quantum numbers,
respectively, and k, ; is the wave number of the nth zero of
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FIG. 1. (Color online) Classical (p,q) PO motions: (a) The
p-bouncing points at boundary divide the circumference into each
angle being 27/p. (b) The chord angle of successive bouncing is
O=¢g-27/p. (c), (d) The angle 6pg is defined for (3, 1) and (5, 2)
POs.

£th Bessel function Jy(k, (). Here the angular component
¢“? is in the form of traveling wave, while substituting by
cos(€¢) or sin(€¢) it is in the form of standing wave. In the
following, if not mentioned, the wave functions used are the
complex wave functions, i.e., the traveling waves. The quan-
tized energy and angular momentum are given by

h2k.
2u

respectively, where the constant 7 and particle mass p will
be set to be unit.

Under the classical limit, the semiclassical wave number
can be obtained from Egs. (1) and (3) and ®=¢g-27/p as [5]

{
ky(p.q, €)= m- (4)

E= and L.=¢fh, (3)

The value of kg (p,q,€) for a motion of (p,q) PO
is determined if we give the angular number ¢, for
instance, k(3,1,100)=200.0, k(4,1,100)=141.4, and
ky(5,2,100)=323.6. In Fig. 2, we draw three horizontal
lines with values of k. (3,1,100), k(4,1,100), and
k«(5,2,100). According to these three horizontal lines,
Mx points, which have the nearest distance from the hori-
zontal lines, are selected from numerous open-symbol points
(k,.¢, € ,n). These selected Mx j points are nearly degenerate
eigenstates and their angular numbers €(K) and nodal num-
bers n(K) have the formulas

¢(K)= €(0)£K - p, (5)
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n(K)=n(0) * K-q, (6)

with K=0,1,2,...,N. For a given €(0), N can be determined
by the constraint of difference between k, ; and k., i.e., Ak
=k, ¢—ks. Here, the jump of p in €(K) is based on the p
degeneracy in the angular part of the wave function, ¢4, and
the multiple of ¢ in the corresponding n(K) is given from the
n values of the dashed lines. As a consequence, these nearly
degenerate eigenstates have a relationship between the quan-
tum numbers of eigenstates and the parameters of PO:
(A€ ,An)=(xp, ¥ q), and the horizontal lines with values of
ke(p.q, ) are the references of picking the nearly degener-
ate eigenstates " x .

It is well known that Schrédinger in 1926 [20] originally
constructed a CS of a one-dimensional harmonic oscillator to
describe a classical particle with a wave packet whose center
in the time evolution follows the corresponding classical mo-
tion. Extended to the two-dimensional system, the
Schrodinger CS is expected to correspond to a wave packet
with its center generally moving along a classical trajectory.
This exact correspondence enables one to derive the station-
ary CSs related to the classical Lissajous orbits form the
time-dependent Schrodinger CSs [21].

In quantum billiards, the stationary CSs corresponding to
the classical motion have been analytically constructed for
square and triangular billiards by using the presentation of
the SU(2) CSs and obtain well localization on the corre-
sponding classical POs [22,23]. For circular billiards, with
the nearly degenerate eigenstates stated in Egs. (5) and (6),
the wave functions associated with single (p,q) POs can be
represented by the CSs

N oN \12

K=-N
X '7/111(0)—K-q,€(0)+l(-p(r9 d))’ (7)
where e*X? is the relative phase between various compo-

nents of the eigenstates i;,()_x.4.¢(0)+kp in Eq. (2). By vary-
ing the angle 6, one can find that the relationship between 6
and 6pg can be given as 6pn=60/p. Consequently, the relative
phase factor is relative to initial points of classical PO. Be-
cause of the symmetry, for different phase factors, the local-
ized POs in the circular billiard only rotate their orientations
but do not change their shapes, while in the triangular or
rectangular billiard the geometric shapes of localized POs are
changed [22,23]. Therefore, the phase factor plays an impor-
tant role in the quantum-classical connection, which has also
been confirmed in the studies of the harmonic oscillator, the
square billiard, and the triangular billiard and demonstrated
by experiments [21-25].

To analyze the constructed CSs in Eq. (7) and realize their
connection with classical motion of a particle in billiard, we
compute the phase space distributions of the constructed CSs
by Poincaré Husimi functions. Figures 3(a) and 3(b) display
the CSs and the corresponding Poincaré Husimi functions in
the forms of standing and traveling waves, cos({¢) and e’‘?,
respectively. Where s is labeled a point on the boundary (0
=s<1) and y is the angle of incidence with respect to the
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outward boundary normal at s, as shown in Fig. 3(c). It is
clear that CS in the form of standing wave is related to the
particle incident in both positive and negative directions
(counterclockwise and clockwise) with y==+30°, while CS
in the form of traveling wave is related to particle incident
only in the positive direction.

Although the number of eigenstates used in the CS
‘P’,{,’,‘f?(o)(r, ¢; 0) is 2N+ 1, the number of dominant eigenstates

for wave localization is rather small, not larger than €(0),
for high-order states [21]. The CSs W} (r,;6) can be
modified to be partially CSs

M
Vi), ¢, 0) = > K oy-kg 0k p(r B, (8)
K=—M

in which the weight for each componential eigenstate can be
regarded as constant and is set to be unit. It is interesting to
point out that the sign of the angular number is opposite to
the sign of the nodal number in the subscript of Eq. (8). They
are originally obtained from the deriving of the nearly de-
generate eigenstates and can be recognized that the simulta-
neous changes of increasing €(K) and decreasing n(K) are to

keep the energies of the eigenstates to be (nearly) constant.
Consistently, the same behaviors happen to the quantum
numbers studied in the Cartesian systems [22,23].

Since the components of the CSs in Eq. (8) are not exactly
degenerate for the Hamiltonian H, the partially CSs in Eq.
(8) are not stationary states for a perfect circular billiard.
Although a quantitative method is not developed to estimate
the closeness of the eigenstates, a qualitative analysis can be
given as follows. To manifest the efficiency of wave local-
ization, one would need the approval of AE/(E)—0 by the
superposing number 2M+1 and the quantum number €(0)
being sufficiently large so that one can ensure the CSs being
stationary states in the classical limit. Here (E) is the expec-
tation value of the Hamiltonian and AE is the dispersion in
energy {|E—(E)|). We show several patterns superposed with
2M+1=3, 5, 7, and 9 in the right-up inset of Fig. 4. It is
apparent that the needed number of superposed eigenstates
for the CS with clearly localized POs is rather small. Only
five nearly degenerate eigenstates are sufficient to construct
the CS. The effect of the angular quantum number €(0) on
the localized patterns is also shown in Fig. 4. The solid line
depicts (|E—(E)|)/{E) related to €(0) and the open circles
are marked at €(0)=20, 35, 60, 120, and 180 accompanying
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FIG. 3. (Color online) Poincaré Husimi distribution of
\Ifl’i,’ffq(o)(r,qﬁ; 0) in Eq. (7) with the angular-part wave functions in
the forms of (a) standing wave cos({¢) and (b) traveling wave ¢‘¢
and (p,q)=(3,1), €£(0)=90, 2N+1=21, and 6#=0. (c) Motion of a
particle in billiard, in which s is a point on the boundary and y is
the angle of incidence with respect to the outward boundary normal.

their density plots of CSs [W/;# | and single eigenstates
|,.¢0)|* The value of (|E—(E)|)/(E) decreases rapidly while
£(0) increases. At £(0) ~ 60, the value of (|E—(E)|)/(E) goes
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to <0.3% and the plot of [¥}4 |* shows much clearer local-
ized PO than |W/%, |> and |W/%|%, so that the large quantum
number €(0) is not necessary.’ The density patterns of CSs
|Wh7, )7 and single eigenstates |4, o(o)|* are relative but to-
tally discordant on their appearances. The eigenstates of the
circular billiard |z/;n,€(0) 2, which is spreading throughout all
the space, do not manifest the properties of classical POs
even in the correspondence limit of large quantum numbers.
However, after analytically superposing only a few of them,
the wave patterns are localized on classical POs clearly. Fig-
ure 5 illustrates CSs with various parameters, in which (3, 1),
(4, 1), and (5, 2) patterns are depicted at €(0)=120 and the
(7, 3) one at £(0)=150. The reason of a higher €(0) needed
in the (7, 3) pattern is to satisfy that the value of (|E
—(E)|)/{E) has to be small enough. This very effective su-
perposition agrees very well with the previous studies in the
representation of SU(2) CSs in Refs. [21-23,26-28].

III. ROLE OF COHERENT STATES IN WEAKLY
PERTURBED MESOSCOPIC SYSTEM

As stated above, the CSs related to single POs are com-
posed of the nearly degenerate eigenstates in the ideal bil-
liard system. In fact, the stationary quantum interference
does not exist without degeneracy. Nevertheless, experimen-
tal and theoretical studies manifest that the CSs related to
POs are usually to be the eigenstates in a real mesoscopic
system that has the imperfection. For example, the defective
structure or the deformed shape of the cavity, which is the
weakly perturbation, causes the nearly degenerate eigenstates
locking together and forms the localized patterns.

To produce an instance, we use a deformed circular bil-
liard to study the properties of eigenstates in a weakly per-
turbed quantum system. The boundary of the deformed cir-
cular billiard is described by the function of the angular
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FIG. 4. (Color online) Order
effects of (i) superposing number
2M+1: At the right-up inset, four
density patterns plot with different
superposing numbers 2M+1=3,
5, 7, and 9, respectively [€(0)
=100, 6=0°]; (ii) center angular
number €(0): Solid curve is the
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FIG. 5. The density plots of |Whf (r,¢;0)* for (p.q)
=(3,1), (4, 1), (5, 2), and (7, 3) with €(0)=120 in (a)—(c) and
£(0)=150 in (d) (6=0,2M+1=7).

coordinate: r(¢) =R(1+ %T¢) where € is the deformation pa-
rameter and R is the radius of the spiral at ¢=0, while the
radius at ¢p=27 is R(1+&). There is a notch being created at
angular origin ¢»=0 and the deformed shape is totally asym-
metric in the angular coordinate. This totally asymmetric
shape is interesting to optical experiments [15,16] because of
high power and directional characters concerned by the out-
put of lasers in which their cavities are often built by semi-
conductors or other high-refractive index materials. Differing
from these dielectric cavities, we consider the spiral-shape
cavity with infinite wells and utilize the expansion method
[29] to numerically calculate the eigenstates. Numerical re-
sults intriguingly reveal that the eigenstates in high-order
regime are often localized on an ensemble of classical POs as
shown in Fig. 6. It is clear that each eigenstate has a main
localized triangle with different orientation. According to the
definitions in Fig. 1, the parameters of the main localized
POs in Fig. 6 are (p,q)=(3,1) and their angles 6pq are: (a)
75°, (b) 90°, (c) 105°, (d) 120°, (e) 135°, (f) 150°, and (g)
165°, respectively. In addition to the main triangle, there are
also several lighter triangles in each pattern, for example,
there is only one triangle in (a) and (g), and two or more
triangles in (b)—(f). This phenomenon of multilocalized POs
has also been seen in the study of the ripple billiard [30] and
our result is consistent with the previous study [12]. More-
over, the experiments about weakly perturbed circular cavi-
ties also have seen the localized POs in their resonant pat-
terns, such as the early acoustic wave patterns [13] and the
optical ray trajectories [14—17].

So far we have utilized the partially CSs [W45,%, o (r, ¢; 6)|*
in Eq. (8) to yield patterns with localizations on single POs
overcoming that the nondegenerate states could not be al-

FIG. 6. Several eigenstates with localizations on POs for the
spiral-shaped billiard with £=0.1.

lowed to cohere to each other. However, in the perturbed
mesoscopic systems, there may be more than two localized
POs in each density pattern of the eigenstate as stated above.
The CS in Eq. (8) is not complete enough to describe the
phenomenon in the perturbed mesoscopic systems. We fur-
ther extend to write down the wave function for the mesos-
copic quantum systems by using the following superposition:

Wieo)(r 8361, 65, ... 0,) = a\ Vi) (r. b 6))
+ a2‘l’ln’/}?€(0)(r, ¢, 02) +

+a,Vio)(r, ¢:6,). 9)

This is the superposition of the CSs in Eq. (8), in which the
values of the angles, 6,, 6,,...,6, and the corresponding
coefficients, a;, a,,...,a,, are based on the best fit to the
corresponding patterns. Figure 7 shows three wave patterns
obtained from Eq. (9) corresponding to eigenstates in the
weakly perturbed systems, among which the first two pat-
terns relate to the previous figures of Figs. 6(b) and 6(c) and
the last one to Fig. 3(c) in Ref. [12]. These patterns are found
to be excellent in agreement with their cases, and as a con-
sequence, the wave functions in the weakly perturbed meso-
scopic systems can analytically and concisely be described as
the mesoscopic eignestate = superposition of CSs. As a cor-
respondence of quantum mechanics and classical dynamics,
the multilocalized POs of an eigenstate relate to a classical
system, in which several particles are simultaneously moving
on POs with different initial points.

IV. THE VECTOR CURRENT AND THE VORTEX
STRUCTURES

Vortices arising from the singular points of quantum
phase can be manifest themselves and play an important role
in quantum mechanics. It is of great interest to analyze the
vortex behavior for the CSs in Eq. (8) by the quantum cur-

rent J
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FIG. 7. Patterns superposed with several CSs relating to the
eigenstates in weakly perturbed mesoscopic systems. (a) With
(6,,60,)=(270°,195°) and (a;,a,)=(0.6,-0.22), the pattern is
similar to Fig. 6(b). (b) With (6,,6,,6;)=(315°,180°,240°)
and (a;,a,,a3)=(0.6,-0.25,-0.06), the pattern is similar to
Fig. 6(c). (c) Pattern superposed with (6;,6,,65, 0y, 65)
=(300°,15°,75°,195°,255°) and (ay,as,a3,a4,as)
=(0.6,0.2,0.2,-0.2,-0.2) simulate the Fig. 3(a) in Ref. [12].

- h
J(r,d;0)=—[Re P VImV¥ -ImPVReTV]. (10)
M

Figures 8(a) and 8(b) illustrate the vector current for CSs
with localized (3, 1) and (5, 2) POs. The quantum current
flown in counterclockwise direction is reflected by the bil-
liard wall and also scattered by another current. Especially
for localized POs with ¢>1 such as (p,q)=(5,2), the mag-
nitude and direction of the current are obviously changed at
the crossing of two trajectories such as the phenomenon in
classical collision of particles.

Deviating from the trajectories, the magnitudes of the cur-
rent are much smaller, in particular at the region with radius
Roin(p,q,€)=R cos(gpﬂ), the magnitudes are almost zero.

The depiction of the current J is not clear enough for observ-
ing the behavior of the quantum fluctuation, and for more
detailed structures one would need the normalized current

J/|J|. Figures 8(c) and 8(d) show the normalized currents for
CSs with localizations on (3, 1) and (5, 2) POs. The most
characteristic of these figures is that there is a big vortex (the
phase singularity) in the center of the billiard, in which the
phase of the wave function is not defined. This big vortex in
the circular billiard is analogous to the magnetic vortices in
the superconductor type I. While the kind of superconductor
type II vortices, latticelike, also can be formed in the square
and triangular billiards in high-order CSs [22,23].

Figures 8(e) and 8(f) amplify the boxes in Figs. 8(c) and
8(d), in which the normalized current surrounded by the bil-
liard wall and localized trajectories moves as disturbed flow.
As we continuously amplify the patterns of the normalized
current to see the fine structures, the more complex informa-
tion will be visible such as singularities, saddles, and ex-
trema (generally called critical points) corresponding to the
phase fields [30,31]. These critical points (points in two di-
mensional space and lines in three dimensional space) play
the role for realizing the fluctuation in quantum system by
analyzing their spatial distribution. It has been proven that
the density of the phase singularities is dependent on the
frequency spectrum in random wave fields [32]. The fine
structure of the normalized current in our analysis also ex-
hibits that the density distribution of the critical points is

PHYSICAL REVIEW E 74, 046214 (2006)

(3,1) (5,2)

FIG. 8. (Color online) Vector current Jin (a) and (b); normal-

ized current J/ |j | in (c) and (d); (e) and (f) are the amplifications of
the boxes marked in (c) and (d) (£(0)=100,2M+1=7, 6=0°).

dependent on the quantum number €(0) of the CSs sourcing
from the quantum interference between the components of
the CSs.

For an ideal closed system, such as the quantum billiard,
the nondegenerate states are real functions; then their cur-
rents are zero and there are no vortices. The nonvanishing
currents can exist when the eigenfunctions are exactly degen-
erate and their wave functions can be complex. However,
once the ideal closed system is weakly perturbed and the
exact degeneracy is lifted, the eigenfunction of the system
will be all real and their currents will be zero. On the other
hand, for an open system with driven excitation, such as in
the laser systems, its high-order stationary states are gener-
ally found to be in terms of the superposition of nearly de-
generate eigenstates, such as the present partically CSs in Eq.
(8), and localized on classical POs [21,24,25]. In other
words, the probability current density of the CS plays an
important role in the mesoscopic stationary states of open
system.

V. CONCLUSION

We have successfully constructed wave functions related
to single classical POs. We have found these wave functions
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can be analytically expressed as coherent superpositions of
the nearly degenerate states. Furthermore, the CSs related to
single classical POs can be concisely used to represent the
mesoscopic eigenstates in weakly perturbed systems and
they are generally consistent with the results obtained in the
previous experimental and numerical investigations [12-17].
The role of the phase factor in quantum-classical transition is
clearly disclosed from the representation of quantum CSs
with localizations on an ensemble of classical POs. More-
over, the behavior of the vector current represent the quan-

PHYSICAL REVIEW E 74, 046214 (2006)

tum transport in classical limit and the formation of vortex in
the normalized current is the result of quantum interference
effect.
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